Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED).

نویسندگان

  • C A Combs
  • A Smirnov
  • D Chess
  • D B McGavern
  • J L Schroeder
  • J Riley
  • S S Kang
  • M Lugar-Hammer
  • A Gandjbakhche
  • J R Knutson
  • R S Balaban
چکیده

A benefit of multiphoton fluorescence microscopy is the inherent optical sectioning that occurs during excitation at the diffraction-limited spot. The scanned collection of fluorescence emission is incoherent; that is, no real image needs to be formed on the detector plane. The nearly isotropic emission of fluorescence excited at the focal spot allows for new detection schemes that efficiently funnel all attainable photons to detector(s). We previously showed [Combs, C.A., et al. (2007) Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J. Microsc. 228, 330-337] that parabolic mirrors and condensers could be combined to collect the totality of solid angle around the excitation spot for tissue blocks, leading to ∼8-fold signal gain. Using a similar approach, we have developed an in vivo total emission detection (epiTED) instrument modified to make noncontact images from outside of living tissue. Simulations suggest that a ∼4-fold enhancement may be possible (much larger with lower NA objectives than the 0.95 NA used here) with this approach, depending on objective characteristics, imaging depth and the characteristics of the sample being imaged. In our initial prototype, 2-fold improvements were demonstrated in the mouse brain and skeletal muscle as well as the rat kidney, using a variety of fluorophores and no compromise of spatial resolution. These results show this epiTED prototype effectively doubles emission signal in vivo; thus, it will maintain the image signal-to-noise ratio at two times the scan rate or enable full scan rate at approximately 30% reduced laser power (to minimize photo-damage).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy.

Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. W...

متن کامل

Optimizing 3D multiphoton fluorescence microscopy.

We present a new optimization concept for 3D multiphoton fluorescence microscopy by finding the optimal excitation beam giving rise to the smallest possible light-emitting volume or the highest possible signal to noise ratio (SNR).

متن کامل

Maximizing fluorescence collection efficiency in multiphoton microscopy

Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The sp...

متن کامل

Multiphoton microscopy in life sciences.

Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm(-2) ...

متن کامل

Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs.

In biological imaging of fluorescent molecules, multiphoton laser scanning microscopy (MPLSM) has become the favorite method of fluorescence microscopy in tissue explants and living animals. The great power of MPLSM with pulsed lasers in the infrared wavelength lies in its relatively deep optical penetration and reduced ability to cause potential nonspecific phototoxicity. These properties are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microscopy

دوره 241 2  شماره 

صفحات  -

تاریخ انتشار 2011